4 research outputs found

    DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive Segmentation Transformer

    Full text link
    Most state-of-the-art instance segmentation methods rely on large amounts of pixel-precise ground-truth annotations for training, which are expensive to create. Interactive segmentation networks help generate such annotations based on an image and the corresponding user interactions such as clicks. Existing methods for this task can only process a single instance at a time and each user interaction requires a full forward pass through the entire deep network. We introduce a more efficient approach, called DynaMITe, in which we represent user interactions as spatio-temporal queries to a Transformer decoder with a potential to segment multiple object instances in a single iteration. Our architecture also alleviates any need to re-compute image features during refinement, and requires fewer interactions for segmenting multiple instances in a single image when compared to other methods. DynaMITe achieves state-of-the-art results on multiple existing interactive segmentation benchmarks, and also on the new multi-instance benchmark that we propose in this paper

    STEm-Seg: Spatio-temporal Embeddings for Instance Segmentation in Videos

    Full text link
    Existing methods for instance segmentation in videos typi-cally involve multi-stage pipelines that follow the tracking-by-detectionparadigm and model a video clip as a sequence of images. Multiple net-works are used to detect objects in individual frames, and then associatethese detections over time. Hence, these methods are often non-end-to-end trainable and highly tailored to specific tasks. In this paper, we pro-pose a different approach that is well-suited to a variety of tasks involvinginstance segmentation in videos. In particular, we model a video clip asa single 3D spatio-temporal volume, and propose a novel approach thatsegments and tracks instances across space and time in a single stage. Ourproblem formulation is centered around the idea of spatio-temporal em-beddings which are trained to cluster pixels belonging to a specific objectinstance over an entire video clip. To this end, we introduce (i) novel mix-ing functions that enhance the feature representation of spatio-temporalembeddings, and (ii) a single-stage, proposal-free network that can rea-son about temporal context. Our network is trained end-to-end to learnspatio-temporal embeddings as well as parameters required to clusterthese embeddings, thus simplifying inference. Our method achieves state-of-the-art results across multiple datasets and tasks. Code and modelsare available at https://github.com/sabarim/STEm-Seg.Comment: 28 pages, 6 figure

    Making a Case for 3D Convolutions for Object Segmentation in Videos

    Full text link
    The task of object segmentation in videos is usually accomplished by processing appearance and motion information separately using standard 2D convolutional networks, followed by a learned fusion of the two sources of information. On the other hand, 3D convolutional networks have been successfully applied for video classification tasks, but have not been leveraged as effectively to problems involving dense per-pixel interpretation of videos compared to their 2D convolutional counterparts and lag behind the aforementioned networks in terms of performance. In this work, we show that 3D CNNs can be effectively applied to dense video prediction tasks such as salient object segmentation. We propose a simple yet effective encoder-decoder network architecture consisting entirely of 3D convolutions that can be trained end-to-end using a standard cross-entropy loss. To this end, we leverage an efficient 3D encoder, and propose a 3D decoder architecture, that comprises novel 3D Global Convolution layers and 3D Refinement modules. Our approach outperforms existing state-of-the-arts by a large margin on the DAVIS'16 Unsupervised, FBMS and ViSal dataset benchmarks in addition to being faster, thus showing that our architecture can efficiently learn expressive spatio-temporal features and produce high quality video segmentation masks. Our code and models will be made publicly available.Comment: BMVC '2

    AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation

    Full text link
    During interactive segmentation, a model and a user work together to delineate objects of interest in a 3D point cloud. In an iterative process, the model assigns each data point to an object (or the background), while the user corrects errors in the resulting segmentation and feeds them back into the model. The current best practice formulates the problem as binary classification and segments objects one at a time. The model expects the user to provide positive clicks to indicate regions wrongly assigned to the background and negative clicks on regions wrongly assigned to the object. Sequentially visiting objects is wasteful since it disregards synergies between objects: a positive click for a given object can, by definition, serve as a negative click for nearby objects. Moreover, a direct competition between adjacent objects can speed up the identification of their common boundary. We introduce AGILE3D, an efficient, attention-based model that (1) supports simultaneous segmentation of multiple 3D objects, (2) yields more accurate segmentation masks with fewer user clicks, and (3) offers faster inference. Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries as well as between them and the 3D scene through a click attention module. Every time new clicks are added, we only need to run a lightweight decoder that produces updated segmentation masks. In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art. Moreover, we also verify its practicality in real-world setups with real user studies.Comment: Project page: https://ywyue.github.io/AGILE3
    corecore